Inference for Logistic Regression
 EPI 204 Quantitative Epidemiology III Statistical Models

Evans County, GA Dataset (1963)

- Data are in evans.dat (text, no header), evans.sas7bdat (SAS version 9 dataset), evans.sav (SPSS dataset), and evans.dta (Stata dataset) on the textbook website given in the syllabus.
- The data are from a cohort study in which 609 white males were followed for 7 years, with coronary heart disease as the outcome of interest.
- The variables are given on the next slide

Input for Evans.dat (tab delimited)
 vars <- c("ID","CHD","CAT","AGE","CHL","SMK", "ECG", "DBP","SBP","HPT","CH","CC")
 evans <- read.table("evans.dat", header $=\mathrm{F}$, col.names=vars)

read.table, read.csv, etc. are all variants that can handle text file input with different defaults.
By default, reads strings as factors, unless stringsAsFactors=F. Often this option is a good idea (soon to be the default?).

Variable	Description
ID	Subject ID, one observation per subject
CHD	Coronary heart disease (1) or not (o)
CAT	High catecholamine level (1) or not (o)
AGE	Age in years
CHL	Cholesterol level
SMK	Ever smoked (1) or never smoked (o)
ECG	ECG abnormality (1) or not (o)
DBP	Diastolic blood pressure
SBP	Systolic blood pressure
HPT	$=1$ if DBP ≥ 90 or SBP ≥ 160, otherwise $=0$
CH	CAT*HPT
CC	CAT* CHL

```
> vars <- c("ID","CHD","CAT","AGE","CHL","SMK","ECG","DBP","SBP","HPT","CH","CC")
> evans <- read.table("evans.dat",header=F,col.names=vars)
> summary(evans)
\begin{tabular}{|c|c|c|c|c|}
\hline ID & CHD & CAT & AGE & CHL \\
\hline Min. : 21 & Min. \(\quad 0.0000\) & Min. \(\quad 0.0000\) & Min. \(\quad 40.00\) & Min. : 94.0 \\
\hline 1st Qu.: 4242 & 1st Qu.:0.0000 & 1st Qu. 0.0000 & 1st Qu.: 46.00 & 1st Qu.:184.0 \\
\hline Median : 9751 & Median :0.0000 & Median :0.0000 & Median : 52.00 & Median :209.0 \\
\hline Mean : 9213 & Mean :0.1166 & Mean : 0.2003 & Mean :53.71 & Mean :211.7 \\
\hline 3rd Qu.: 13941 & 3rd Qu.:0.0000 & 3rd Qu. 0.0000 & 3rd Qu.: 60.00 & 3rd Qu.:234.0 \\
\hline Max. :19161 & Max. \(: 1.0000\) & Max. \(: 1.0000\) & Max. \(\quad 76.00\) & Max. \(: 357.0\) \\
\hline SMK & ECG & DBP & SBP & \\
\hline Min. \(\quad 0.0000\) & Min. \(\quad 0.0000\) & Min. \(\quad 60.00\) & Min. : 92.0 & \\
\hline 1st Qu.:0.0000 & 1st Qu.:0.0000 & 1st Qu.: 80.00 & 1st Qu.:125.0 & \\
\hline Median :1.0000 & Median : 0.0000 & Median : 90.00 & Median : 140.0 & \\
\hline Mean :0.6355 & Mean :0.2726 & Mean : 91.18 & Mean : 145.5 & \\
\hline 3rd Qu.:1.0000 & 3rd Qu.: 1.0000 & 3rd Qu.:100.00 & 3rd Qu.:160.0 & \\
\hline Max. \(: 1.0000\) & Max. \(: 1.0000\) & Max. \(: 170.00\) & Max. \(: 300.0\) & \\
\hline
\end{tabular}
```

```
    HPT
    CH
    Min. :0.0000 Min. :0.0000 Min. : 0.00
    1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 0.00
    Median :0.0000 Median :0.0000 Median : 0.00
    Mean :0.4187 Mean :0.1609 Mean : 39.96
    3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.: 0.00
    Max. :1.0000 Max. :1.0000 Max. :331.00
    (one of many possible exploratory plots)
> plot(SBP ~ AGE, data=evans)
> abline(coef(lm(SBP~AGE,data=evans)),lwd=2)
> abline(h=140,col="blue",lwd=2)
> abline(h=160,col="red",lwd=2)
> title("Systolic Blood Pressure by Age")
```


Systolic Blood Pressure by Age


```
> summary(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans))
```

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-6.680112	1.136363	-5.879	$4.14 \mathrm{e}-09$ ***
CAT	0.715810	0.340180	2.104	0.03536 *
AGE	0.032770	0.015197	2.156	0.03105 *
CHL	0.008608	0.003259	2.641	0.00827 **
SMK	0.802906	0.303001	2.650	0.00805 **
HPT	0.476272	0.289296	1.646	0.09970.

```
Signif. codes: 0 '***' 0.001 '**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 438.56 on 608 degrees of freedom
Residual deviance: 401.95 on 603 degrees of freedom
AIC: 413.95
Number of Fisher Scoring iterations: 5
> dropl(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans),test="Chisq") Single term deletions

Model:
CHD ~ CAT + AGE + CHL + SMK + HPT
Df Deviance AIC LRT Pr (>Chi)
<none> 401.95413 .95
CAT 1406.33416 .334 .38050 .036353 *
AGE 1406.52416 .524 .56820 .032571 *
CHL $1408.86418 .86 \quad 6.9088 \quad 0.008577$ **
SMK 1409.65419 .657 .69900 .005525 **
HPT 1404.66414 .662 .70970 .099741 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

HPT is not statistically significant, but omitting it causes a rise in the AIC, so some might keep it in the model.

Likelihood Ratio Test

- This is used to compare two statistical models that are nested, meaning that one (the full model) has all the terms of the other (the reduced model) plus one or more additional ones.
- For example, the full model might have CHD~CAT+AGE+CHL+SMK+HPT
- And the reduced model might have CHD~CAT+AGE+CHL+SMK (removing HPT) or CHD~CAT+CHL+SMK (removing AGE and HPT)

Likelihood Ratio Test

- If the full model has likelihood L_{F} and the reduced model has likelihood L_{R}, then statistical theory says that $-2 \ln \left(\mathrm{~L}_{\mathrm{R}} / \mathrm{L}_{\mathrm{F}}\right)=-2\left[\ln \left(\mathrm{~L}_{\mathrm{R}}\right)-\ln \left(\mathrm{L}_{\mathrm{F}}\right)\right]$ has approximately a chisquared distribution with $\mathrm{df}=$ the number of omitted variables (with categorical variables counting as one less than the number of categories).
- Since $\mathrm{D}=-2\left[\ln (\mathrm{~L})-\ln \left(\mathrm{L}_{\mathrm{o}}\right)\right]$, where L_{o} is the likelihood of the maximal model, we can equally use $\mathrm{D}_{\mathrm{R}}-\mathrm{D}_{\mathrm{F}}=-2\left[\ln \left(\mathrm{~L}_{\mathrm{R}}\right)-\ln \left(\mathrm{L}_{\mathrm{o}}\right)\right]+2\left[\ln \left(\mathrm{~L}_{\mathrm{F}}\right)-\ln \left(\mathrm{L}_{\mathrm{o}}\right)\right]$ $=-2\left[\ln \left(\mathrm{~L}_{\mathrm{R}}\right)-\ln \left(\mathrm{L}_{\mathrm{F}}\right)\right]$

```
> deviance(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans))
[1] 401.947
> deviance(glm(CHD~CAT+AGE+CHL+SMK,family=binomial,data=evans))
[1] 404.6566
> deviance(glm(CHD~CAT+CHL+SMK,family=binomial,data=evans))
[1] 409.3424
Test for omitting HPT from full model uses 404.6566-401.947 = 2.7096.
Compare to chi-squared on ldf
> 1-pchisq(2.7096,1)
[1] 0.099746
(same as produced with drop1)
```

```
    deviance(glm(CHD~CAT+AGE+CHL+SMK+HPT,family=binomial,data=evans))
    [1] 401.947
> deviance(glm(CHD~CAT+AGE+CHL+SMK,family=binomial,data=evans))
[1] 404.6566
> deviance(glm(CHD~CAT+CHL+SMK,family=binomial,data=evans))
[1] 409.3424
Test for omitting both HPT and AGE from full model uses 409.3424 - 401.947=
7.3954
Compared to a chi-squared on 2df
> 1-pchisq(7.3954,2)
[1] 0.02478046
> anova(glm(CHD~CAT+CHL+SMK, family=binomial,data=evans),
glm(CHD~CAT+AGE+CHL+SMK+HPT, family=binomial,data=evans),test="Chisq")
Analysis of Deviance Table
Model 1: CHD ~ CAT + CHL + SMK
Model 2: CHD ~ CAT + AGE + CHL + SMK + HPT
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 605 409.34
2603 401.95 2 7.3955 0.02478*
```


Interaction Terms

- We almost always observe a principle of hierarchy of models.
- If an interaction term such as CAT*HPT is in the model, then the main effects CAT and HPT are also in the model. If a three-way interaction such as CAT* ${ }^{*}$ HL*HPT is in the model, then so are all three * two way interactions CAT*CHL, CAT*HPT, and CHL*HPT as well as the three main effects.
- R will observe this in dropi() as long as the interactions are explicitly stated.
> summary (glm(CHD~CAT+CHL+SMK+HPT+CAT*CHL+CAT*HPT,binomial, data=evans))

Coefficients:

| | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | |
| :--- | ---: | ---: | ---: | :--- | :--- |
| (Intercept) | -2.132296 | 0.913911 | -2.333 | $0.019640 \quad$ * |
| CAT | -12.719878 | 3.138573 | -4.053 | $5.06 e-05 \quad$ *** |
| CHL | -0.005312 | 0.004166 | -1.275 | 0.202248 |
| SMK | 0.698997 | 0.324996 | 2.151 | 0.031493 * |
| HPT | 1.105883 | 0.328508 | 3.366 | 0.000762 *** |
| CAT:CHL | 0.071175 | 0.014494 | 4.911 | $9.07 e-07$ *** |
| CAT $:$ HPT | -2.221010 | 0.730937 | -3.039 | 0.002377 ** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 438.56 on 608 degrees of freedom Residual deviance: 352.92 on 602 degrees of freedom AIC: 366.92

Number of Fisher Scoring iterations: 6

```
> dropl(glm(CHD~CAT+CHL+SMK+HPT+CAT*CHL+CAT*HPT,binomial,data=evans))
Single term deletions
```

Model:
$\mathrm{CHD} \sim \mathrm{CAT}+\mathrm{CHL}+\mathrm{SMK}+\mathrm{HPT}+\mathrm{CAT} * \mathrm{CHL}+\mathrm{CAT} * \mathrm{HPT}$
Df Deviance AIC
<none> $\quad 352.92366 .92$
$\begin{array}{llll}\text { SMK } & 1 & 357.93 & 369.93\end{array}$
CAT:CHL 1399.88411 .88
CAT:HPT 1362.06374 .06

Can't drop CAT, CHL, or HPT.

(because of hierarchy restrictions)

Interaction Terms

- Other than the hierarchical model for interactions, we can compare any two nested models.
- If we want to omit CHL, we also have to omit CAT* CHL , and we have a 2 df comparison.
- CHL is quantitative, CAT* CHL is o whenever CAT $=0$, and is equal to CHL when CAT $=1$.
- Inclusion of the interaction means that the effect of high catecholamines is higher when cholesterol is high.
- It also means that the effect of cholesterol is greater when catecholamines are high.

Wald Tests

- Statistical theory provides an estimated variance-covariance matrix for the coefficients.
> coef(summary (hyp.glm))

| | Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -2.37766146 | 0.3801845 | -6.2539671 | $4.001553 \mathrm{e}-10$ |
| smokingYes | -0.06777489 | 0.2781242 | -0.2436857 | $8.074742 \mathrm{e}-01$ |
| obesityYes | 0.69530960 | 0.2850851 | 2.4389544 | $1.472983 \mathrm{e}-02$ |
| snoringYes | 0.87193932 | 0.3975736 | 2.1931517 | $2.829645 \mathrm{e}-02$ |

> round(vcov(hyp.glm),4)
(Intercept) smokingYes obesityYes snoringYes

(Intercept)	0.1445	-0.0161	-0.0147	-0.1355
smokingYes	-0.0161	0.0774	0.0000	-0.0074
obesityYes	-0.0147	0.0000	0.0813	-0.0081
snoringYes	-0.1355	-0.0074	-0.0081	0.1581

Wald Tests

- Each coefficient has an estimated variance and therefore standard error.
- In general, the coefficients are correlated.
- Confidence intervals and tests for single coefficients are given in the summary $(g \operatorname{lm}())$ output or are easily derived.
- We need to do more work to find confidence intervals and tests for differences of coefficients as when a factor has more than two levels.
- The same trick allows us to get confidence intervals and tests for interaction terms.

```
> coef(summary(hyp.glm))
                Estimate Std. Error z value Pr (>|z|)
    (Intercept) -2.37766146 0.3801845 -6.2539671 4.001553e-10
smokingYes -0.06777489 0.2781242 -0.2436857 8.074742e-01
obesityYes 0.69530960 0.2850851 2.4389544 1.472983e-02
snoringYes 0.87193932 0.3975736 2.1931517 2.829645e-02
CI for obesity log odds ratio 0.6953 土 (1.960)(0.2851)
0.6963 \pm 0.5588
    (0.1365, 1.2541)
CI for odds ratio use exp()
    (1.15, 3.50)
> confint.default(glm(hyp.tbl~smoking+obesity+snoring,
                        binomial,hyp))
                                2.5% 97.5%
(Intercept) -3.12280942 -1.6325135
smokingYes -0.61288823 0.4773385
obesityYes 0.13655304 1.2540662
snoringYes 0.09270929 1.6511693
```

> juull.glm <-
glm(menarche~age+tanner,binomial,data=juull)
> summary(juul1.glm)
Coefficients:

| | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | |
| :--- | ---: | ---: | ---: | :--- | :--- |
| (Intercept) | -13.7758 | 2.7630 | -4.986 | $6.17 e-07 \quad * * *$ |
| age | 0.8603 | 0.2311 | 3.723 | $0.000197 \quad * * *$ |
| tanner2 | -0.5211 | 1.4846 | -0.351 | 0.725609 |
| tanner3 | 0.8264 | 1.2377 | 0.668 | 0.504313 |
| tanner4 | 2.5645 | 1.2172 | 2.107 | 0.035132 * |
| tanner5 | 5.1897 | 1.4140 | 3.670 | 0.000242 *** |

The estimated log odds between tanner 5 and tanner 4 is $5.1897-2.5645=2.6252$
How do we make a confidence interval or hypothesis test?

If X and Y are random variables then
$V(X-Y)=V(X)+V(Y)-2 \operatorname{Cov}(X, Y)$
more generally, if a and b are any numbers
$V(a X+b Y)=a^{2} V(X)+b^{2} V(Y)+2 a b \operatorname{Cov}(X, Y)$
If B is a vector of coefficients $B=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)$
and V is the $(p+1)$ by $(p+1)$ covariance matrix of B, and b is a vector of length $(p+1)$ of numbers, then
$b^{\top} B=\sum_{i=0}^{p} b_{i} \beta_{i}$ has variance
$\mathrm{b}^{\top} V b=\sum_{i=0}^{p} \sum_{j=0}^{p} b_{i} b_{j} v_{i j}$

```
    c1 <- coef(juull.glm)
> v1 <- vcov(juull.glm)
> Cl
\begin{tabular}{lrrrrr} 
(Intercept) & age & tanner2 & tanner3 & tanner4 & tanner5 \\
-13.7758129 & 0.8603095 & -0.5210667 & 0.8264390 & 2.5645049 & 5.1896586
\end{tabular}
> v1
(Intercept) age tanner2 tanner3 tanner4 tanner5
(Intercept) 7.63420854 -0.59398971 -0.08627975 0.2184034 0.4414426 0.6973030
age -0.59398971 0.05338584-0.08439333-0.1117773-0.1318233-0.1548192
tanner2 -0.08627975 -0.08439333 2.20415172 1.2019693 1.2336584 1.2700108
tanner3 0.21840340-0.11177725 1.20196929 1.5319140 1.3012763 1.3494243
tanner4 0.44144258-0.13182328 1.23365842 1.3012763 1.4816528 1.4075578
tanner5 0.69730303-0.15481918 1.27001076 1.3494243 1.4075578 1.9993267
> bl <- c(0,0,0,0,-1,1) # this is the contrast = comparison of tanner 4 and 5
> t(bl) %*% cl
    [,1]
[1,] 2.625154
> t(bl) %*% v1 %*% bl
    [,1]
[1,] 0.6658638
2.625154 土 (1.960)\sqrt{}{0.6658638}
2.625 土 1.599 or (1.025, 4.224) log odds ratio or (2.787, 68.33) odds ratio
```


Alternatives

- We can re-run the analysis with a different default level for the categorical variable so that the desired comparison is a single coefficient.

```
relevel {stats} Reorder Levels of Factor
The levels of a factor are re-ordered so that the
level specified by ref is first and the others are
moved down.
relevel(x, ref, ...)
x an unordered factor.
ref the reference level, typically a string.
```


Contrasts

- A contrast is a weighted combination of factor levels in which the weights add up to 1 .
- We can change the coding of a factor with five levels from an intercept and four o/1 variables to a set of contrasts.
- This can be complex and hard to implement.
- There are other R packages that can handle these separately such as mul tcomp.

Interaction Terms

- An interaction means that the effect of one variable depends on the level of another.
- To get a numerical measure of effect such as odds ratio, we need to specify the level of the other one.
- We can set the other variable at the modal level, the median level, or the mean level, or at a variety of levels
- We will illustrate this with the evans data.
summary (glm(CHD~CAT+CHL+HPT+CAT*HPT,binomial, evans))

Coefficients:

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	-4.575185	0.758746	-6.030	$1.64 e-09$

Effect of CAT when HPT $=0$ is 2.190774 with inferences given on the line.
Effect of CAT when HPT $=1$ is $2.191-1.681=0.5093$
We can analyze the latter using $b 1=c(0,1,0,0,1)$
$>\mathrm{b} 1<-\mathrm{c}(0,1,0,0,1)$
$>\mathrm{t}(\mathrm{b} 1)$ \%*\% c1
[, 1]
[1,] 0.5093054
$>v<-\operatorname{vcov}(e v a n s l . g l m)$
$>t(b 1) \% * \% v \% * \%$ b1
[,1]
[1,] 0.1245581
$>\operatorname{sqrt}(t(\mathrm{bl}) \% * \% \mathrm{v} \% * \% \mathrm{~b} 1)$
$[, 1]$
[1,] 0.3529279

```
\eta=-4.575 + 2.191 CAT + 0.008495 CHL + 0.9127 HPT - 1.6815 CAT }\times\mathrm{ HPT
When HPT = 0, this is
\eta=-4.575 + 2.191 CAT + 0.008495 CHL
and the effect of CAT is 2.191
Inference can be read off the coefficient table
When HPT = 1, this is
\eta=-4.575 + 2.191 CAT + 0.008495 CHL + 0.9127 - 1.6815 CAT
and the effect of CAT is 2.191 - 1.6815
Inference is more complex
```

Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-4.575185	0.758746	-6.030	$1.64 e-09$	$* * *$
CAT	2.190774	0.498842	4.392	$1.12 e-05$	$* * *$
CHL	0.008495	0.003256	2.609	0.00909	$* *$
HPT	0.912656	0.324423	2.813	$0.00491 \quad * *$	
CAT $: H P T$	-1.681469	0.600829	-2.799	$0.00513 \quad * *$	

Effect of CAT when HPT $=0$ is 2.190774 with inferences given on the line. Effect of CAT when HPT $=1$ is $2.191-1.681=0.5093$
$>\mathrm{b} 1<-\mathrm{c}(0,1,0,0,1)$
$>t(\mathrm{~b} 1) \% * \% \mathrm{c} 1$
[1,] 0.5093054
$>v<-\operatorname{vcov}(e v a n s l . g l m)$
$>\operatorname{sqrt}(t(\mathrm{~b} 1) \% * \% \mathrm{v} \% * \% \mathrm{~b})$
[1,] 0.3529279

Log odds ratio $=0.5093054$, odds ratio $=1.664$
Log odds ratio CI is $0.5093 \pm(1.960)(0.3529) 0.5093 \pm 0.6917$
$(-.1824,1.2010)$ and odds ratio $C I$ is $(0.83,3.32)$

Catecholamine level has a significant effect on non-hypertensives, but a smaller and non-significant effect on hypertensives. 41.9% of subjects are hypertensive, so we could use b1 <- c (0,1,0,0,0.419) for average effect.

Homework: Due 4/15/21

- For the Byssinosis data, there are three levels of workspace. Test the hypothesis that each differs from the other (two are in the summary table and the third requires the covariance matrix). Find 95% confidence intervals for the three odds ratios.
- Do the same for the three levels of employment time.
- Fit a model omitting race and sex but including the smoking by workspace interaction. Find the estimated effect of smoking for each of the three workspaces separately, test the hypothesis of no effect, and find 95% confidence intervals for the odds ratios.

